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According to the modal interpretation of quantum mechanics, subsystems of a 
quantum mechanical system have definite properties, the set of definite properties 
forming a partial Boolean algebra. It is shown that these partial Boolean algebras 
have no common extension (as a partial Boolean subalgebra of the properties of 
the total system) that is embeddable in a Boolean algebra. One has thus either 
to restrict the rules to preferred subsystems (Healey), or to advocate a shift in 
metaphysics (Dieks). 

1. I N T R O D U C T I O N  

The riddles in the foundations of quantum mechanics are closely linked 
with the question of realism in the interpretation of quantum mechanics. An 
instrumentalist interpretation of quantum mechanics has no measurement 
problem, because it only seeks to describe regularities arising on the level 
of macroscopic preparation and registration procedures. Conversely, once 
one ascribes reality to the quantum state of a system, then one is confronted 
with the problem of explaining the collapse of the quantum state, which seems 
to contradict the dynamical laws of quantum mechanics (the Schr6dinger 
equation). I propose to call this position, that takes at face value the (collapsed) 
states used to describe quantum mechanical systems, and interprets them as 
describing real properties of the system, the naive realist position in quantum 
mechanics (this term is by no means meant to be disparaging). However, 
there are other realist positions. The paradigm examples are Bohm theory 
and the modal interpretation. In both theories, only the state of the whole 
universe is real, in a sense, while properties of  systems other than the universe 
are hardly at all related to the (collapsed) quantum states that are usually 
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assigned to the systems. The main difference between Bohm theory and the 
modal interpretation, however, is that the description of the 'real state' of a 
system uses the configuration space of the system in the case of Bohm theory, 
and the Hilbert space of the system in the modal interpretation. The aim of 
this paper is to analyze how the modal interpretation, at least in some of its 
versions, fares with respect to the Kochen-Specker theorem, which, as is 
well known, poses restrictions on the ascription of truth values to propositions 
(projections) in the Hilbert space of a quantum mechanical system. 

In this paper, I shall consider the versions of the modal interpretation 
by Kochen (1985), Healey (1989), and Dieks (1989). However, the approach 
taken here and the kind of questions addressed have much in common with 
work done by Bub in the context of his own version of the modal interpreta- 
tion, for example, in Bub (1995). In Section 2, I shall briefly present the 
Kochen-Specker theorem and its framework. Then I shall introduce the rules 
of the modal interpretation (Section 3). I shall then motivate and derive a 
Kochen-Specker theorem for the modal interpretation (Sections 4 and 5). A 
brief discussion concludes the paper (Section 6). 

2. PARTIAL BOOLEAN ALGEBRAS 

The Kochen-Specker theorem is formulated in terms of partial Boolean 
algebras. A partial Boolean algebra, for short PBA [Kochen and Specker 
(1967) and references therein, all reprinted in Hooker (1975)], is a structure 
(A; ~ ;  A, V, ~, 0, 1), where A is a set with two distinguished elements 0 
and 1, ~ is a binary relation on A, called comeasurability, �9 is a unary 
operation on A (the negation), and/~ and L / are two partial binary operations 
on A, defined only for pairs of comeasurable elements (the logical connec- 
tives). Apart from the partial definability of the logical connectives, a PBA 
satisfies the usual axioms of a Boolean algebra, and every Boolean algebra 
is a PBA. The set of all subspaces of the Hilbert space of a quantum mechanical 
system forms a PBA, comeasurability being defined as commutativity of the 
corresponding projections, and the logical connectives being defined as the 
lattice-theoretic supremum and infimum, restricted to pairs of comeasura- 
ble propositions. 

An interpretation of a PBA is defined as a pair 

(B, q~) (1) 

where B is a partial Boolean (PB) subalgebra of the given PBA, and cp is a 
PBA2homomorphism of B onto the (partial) Boolean algebra {0, 1 }. Since 
every Boolean algebra is (P)BA-homomorphic to {0, 1}, any embedding 
(PBA-homomorphism) of a PB subalgebra B into a Boolean algebra will 
induce interpretations of the PBA. Special cases am interpretations of the form 
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(C, q~) (2) 

where C is now a Boolean (or a maximal Boolean) subalgebra of the PBA. 
Specker (1960) has emphasized that PBAs arise in the analysis of logics 

of propositions that are not simultaneously decidable. As we know from 
Bohr, quantum mechanical propositions that are not comeasurable in Kochen 
and Specker's sense are indeed not simultaneously decidable, because they 
require mutually incompatible experimental arrangements in order to be 
tested. In particular, no experiment can tell that two atomic propositions that 
are incomeasurable are true. However, there are interpretations of a quantum 
mechanical PBA in which incomeasurable atomic propositions are, indeed, 
simultaneously true! These can be constructed just by 'pasting together' two 
appropriate interpretations of the form (2). This situation is surprising, and 
prompts the question whether one could go on indefinitely pasting together 
interpretations, and obtain truth values for all quantum mechanical 
propositions. 

The Kochen-Specker theorem (Kochen and Specker, 1967) answers this 
question in the negative. Kochen and Specker take a three-dimensional Hilbert 
space (the general case of dimension higher than three follows trivially), and 
they choose a finite sequence (Ci)i= ~,...,U of maximal Boolean subalgebras 
(orthonormal bases), each element in the sequence being generated by a 
rotation about one of the vectors of the basis corresponding to the previous 
maximal Boolean subalgebra, so that any two successive elements have one 
proposition in common (the same holds for the first and the last elements in 
the sequence). The sequence is constructed in such a way that the union of 
the Cg is not embeddable in a Boolean algebra: whatever the choice of the 
r the truth valuations q~g have no common extension to the union of all the 
maximal Boolean subalgebras Ci. This shows that the PBA of propositions 
is not embeddable in a Boolean algebra, because it contains afinite subalgebra 
that is not. Notice, however, that the general question of which PB subalgebras 
are embeddable in Boolean algebras is left open. And this is why we shall have 
to address a similar problem again in the context of the modal interpretation. 

3. THE M O D A L  INTERPRETATION 

I shall now spell out the basic rules of the modal interpretation, in the 
versions that are based on the spectral resolution of the reduced state of a 
system, or the biorthogonal decomposition theorem. I shall be concerned in 
particular with Healey's and Dieks' versions and with their further develop- 
ments (I regard these as applying simultaneously to both versions) due to 
Vermaas and Dieks (1995) and Clifton (1995a). As I mentioned before, in 
the modal interpretation one assigns properties to quantum mechanical sys- 
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tems that correspond to projections in the Hilbert space of the system, but 
in a quite unusual way. Healey and Dieks ultimately disagree on which 
systems are to be ascribed properties, but they agree as to the rules by which 
these properties are ascribed. 

First of all, no collapse of the state is assumed in the modal interpretation, 
so the usual, collapsed quantum state of a system plays no role in the 
determination of the properties of the system (it is only an effective state, as 
it were). One has to look at the 'true,' uncollapsed state of the system, that 
is, its reduced state p, obtained by partial tracing over the environment of 
the system. The usual way of ascribing properties to the system would be to 
take the projections with dispersion-free values as the definite properties of 
the system. That is, one defines an interpretation of the PBA of propositions 
that has the form 

(Bo, %) (3) 

where p is the reduced state of the system, B o is the PB subalgebra generated 
by all projections with dispersion-free values in p, and % is defined as the 
restriction of p to B o. In the modal interpretation, one postulates that the 
system possesses additional properties with certain probabilitiesfl The rules 
use the unique spectral resolution of p: 

p = ~ ci Pi (4) 
i 

They are as follows. 

PROP. At any instant, the set of definite properties of a system with 
Hilbert space ~ in a state P is the PBA, call it Ap, generated by the projections 
with a dispersion-free value in p and by the projections Pi in the spectral 
resolution of p. 

The possible truth-value assignments on Ap have the form q~, where 
q~ = % on Bp, a n d  q~(Pj) = ~ij" 

PROB.  The probability for the actual truth-value assignment on A o to 
be q~ is equal to 

Tr(pPi) (5) 

Thus, Ap, the PBA of definite properties, is a proper extension of B~, 
and a probability measure is given over the possible interpretations 
(A,, ~p~). Comparison with the Born rule shows that the probabilities with 

2The rules of the modal interpretation as originally formulated did not explicitly include the 
projections with dispersion-free values among the definite properties. It was Clifton (1995a), 
following Arntzenius (1990), who argued that these ought to be included in the set of definite 
properties, and who suggested modifying the rules accordingly. 
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which definite properties are actually true coincide with the probabilities for 
results of ideal measurements in standard quantum mechanics. If p is pure, 
the definite properties turn out to be only the projections with dispersion- 
flee values in p, and the probabilities collapse to 0 or 1. 

Healey and Dieks also agree as to the simultaneous ascription of proper- 
ties when the systems that are to be ascribed properties are subsystems given 
by a factorization of a larger system. Take a system ~ in a state p, that is 
factorized as ~ = ~ l |  �9 �9 | In this case, PROP is applied simultaneously 
to all subsystems in the factorization. The properties thus defined have then 
a joint probability distribution, fixed by the following condition. 

CORR. The joint probability for the subsystems ~ . . . . .  ~U of ~ to 
actually possess (by PROP) the properties P], . . . . .  pU, respectively, is 
equal to 

Tr(gP},@.. " | pN) (6) 

Again, comparison with the Born rule shows that the joint probabilities 
for possessed values coincide with the quantum mechanical predictions for 
measurement outcomes upon ideal joint measurements. Some results about 
correlations between properties of a system and properties of its subsystems 
have recently been derived by Vermaas (1995). 

However, the versions of Healey and Dieks diverge at the point of 
deciding which factorizations are allowed as defining subsystems to which 
properties are ascribed. Healey argues that certain factorizations are physically 
preferred, and ascribes properties only to the systems defined by those factor- 
izations. Dieks instead considers arbitrary factorizations as defining systems 
that are ascribed properties. Thus Dieks ascribes properties to every quantum 
mechanical system, that is, to any subsystem appearing in any possible 
factorization of the Hilbert space of the universe. However, he has not yet 
formulated an explicit rule for correlations between properties of subsystems 
belonging to different factorizations. The Kochen-Specker theorem we are 
going to derive is, in fact, a constraint on any such rule for correlations 
between properties associated with different factorizations, and it suggests 
that these properties should, indeed, be uncorrelated. 

Before continuing, let me mention that the above rules PROP, PROB, 
and CORR have an alternative formulation for the special case of a system 

that is factorized into two subsystems and is in a pure state. If I~) E 3~ 
= ~ i  @ 3~2, then Iq t} has a Schmidt (or biorthogonal) decomposition, that 
is, there are orthonormal bases { Iq~i>} in 7~1 and { ICj>} in ~(~2 such that 

l qO : ~ c~l~) | IDA> (7) 
i 
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If the Ici[ are nondegenerate, the choice of the bases is unique (up to phase 
factors). The alternative formulation of the rules now runs as follows. 

SCHMIDT. If a system ~ = ~z @ ~2 is in a pure state I't r) with 
biorthogonal decomposition 

[*) = ~ Cilq~i) @ [~1 i) 
i 

then the system ~ possesses with probability 1 the properties given by the 
projections with the vector I~) in their range, as well as with probability 0 
all properties orthogonal to these. If the biorthogonal decomposition is unique 
(nondegenerate), the systems ~ and ~2 possess the properties generated by 
the projections in 7~ and 7s that have dispersion-free values in the respective 
reduced states (which are possessed with probabilities equal to 0 and 1) and 
by the projections onto the [tpi) and It~i) (which are possessed with joint 
probabilities equal to I czl2~ej). If the biorthogonal decomposition is degenerate, 
the additional generators of the properties of the subsystems are the corres- 
ponding multidimensional projections. 

4. POSING THE PROBLEM 

The standard example of an interpretation of the PBA of propositions 
of a quantum mechanical system is the pair (Bo, %) described above (3), 
where P is the reduced state of the system. Interpretations that arise in 
this manner have a nice consistency property that, like the related concept 
introduced by Healey (1989) and analyzed by Clifton (1995b) 3, we shall call 
property composition. 

Take a system 7s in a state p, that is factorized as ~ = ~ | ~(~2" The 
interpretations of the form (3) defined on ~ j  and 7s are 

(B~I, ~0,) and (Bp2, q)p2 ) (8) 

where pl and P2 are the reduced states of the subsystems ~1 and ~2, 
respectively. Bo~ and Boz are PB subalgebras of the PBAs of propositions of 
7~1 and ~2, respectively, but since these are factor spaces in ~ ,  one can 
consider Bo~ and Bp2 also as PB subalgebras of elements of the form P | 1 
and 1 | Q in the composite space ~.  So the interpretations (8) define also 
interpretations of the PBA of ~ .  But now, because of the definition of the 

3Consider a quantum mechanical system with Hilbert space ~ = ~'t | ~2. Suppose that the 
actually possessed properties of the two subsystems are given respectively by the projections 
P in ~l and Q in ~'2. Property composition in the sense of Healey (1989) and Clifton (1995b) 
is the ascription of the composite property P | Q to the total system ~----in particular, the 
ascription of a property P | 1 to the total system whenever the corresponding subsystem 
possesses a property P. 
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reduced states p~ and P2, it is evident that the interpretations of the PBA of 
thus defined have a common extension that is, in fact, a subinterpretation 

of (Bp, q~o)- Furthermore, this holds irrespective of the chosen factorization. 
That is, given a system ~ in a state p, all interpretations of the form (3) 
defined on all subsystems of ~ with respect to any possible factorization 
(including the trivial factorization ~ = C | 7f) have a common extension, 
and this common extension is (Bp, %). The interpretations of the form (3) 
can be 'pasted together' and the union of all Bo, defined in the large Hilbert 
space, is embeddable in a Boolean algebra. 

The question we address in this paper is whether, when we define 
properties of systems using the Ap instead of the Bp, the corresponding PB 
subalgebras in the composite space ~ also are jointly embeddable in a Boolean 
algebra, or whether this is precluded by a result similar to the Kochen-Specker 
theorem. Interpretations for systems defined by the same factorization do 
have a common extension, because they define mutually comeasurable PB 
subalgebras in ~.  Interpretations defined for systems and their subsystems 
(as in Healey's version) can probably also be pasted together regardless of 
the Kochen-Specker theorem, although this needs to be shown explicitly. 
We shall investigate whether PBAs of definite properties of systems defined, 
as in Dieks' modal interpretation, by different factorizations of a given system 
form a PBA that is embeddable in a Boolean algebra. We shall show that 
they cannot. 

5. T H E  K O C H E N - S P E C K E R  T H E O R E M  

5.1. Factor izat ions  of  Hilbert  Spaces 

One can define afactorization of a Hilbert space ~ into a tensor product 
of two Hilbert spaces ~1 | ~2 as an isomorphism between ~ and ~l  | 
~2, or better as an equivalence class of isomorphisms differing only by a 
basis transformation of the factor spaces onto themselves. 

Definition 1. Let ~ be an (n X m)-dimensional Hilbert space (where n 
and m could be infinite). An (n • m)-factorization dp of ~ is an equivalence 
class of isomorphisms 

f: % ~ ~l  |  

(where ~ l  and ~2 are Hilbert spaces of dimension n and m, respectively), 
defined by the following equivalence relation: 

f -- f :c::~ f = Vl | V2f 

with VI: ~1 --~ ~1 and V2:~2 -+ ~2 both unitary. 
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Definition 2. A unitary transformation U: ~ --> ~ is factorizable with 
respect to a factorization qb iff for an f ~ ~b (and hence for all f EcI)) 

f U  = U l @ Uz f  

with Ul: ~1 ''@ ~1 and U2:~2 ---> ~2 both unitary. 

From these two definitions one derives immediately the following 
lemma. 

Lemma 3. L e t f b e  an isomorphism from ~ onto ~ | ~2, and let U 
be a unitary transformation of ~ onto itself. Define a new isomorphismf := 
fU.  Then 

f - f r U is factorizable 

We can now formulate the biorthogonal decomposition theorem in the 
terminology of factorizations. 

Theorem 4. (Schmidt). Let ~P be a factorization of a Hilbert space ~ .  
Then for all [if t) ~ ~ there is anfs ~ �9 such that 

l if) = 2 C'~SI[~i) @[+i) 
i 

where {l~i)} and {1~i)} are two fixed orthonormal bases in ~ and ~2. If 
the Icil are nondegenerate, fs is unique (apart from phase factors). 

5.2. Proof of the Theorem 

We now prove the Kochen-Specker theorem for the modal interpretation. 
It is enough to specialize to the case of a 9-dimensional Hilbert space and 
its (3 x 3)-dimensional factorizations; the general case then follows. We 
shall assume throughout that all biorthogonal decompositions are nondegener- 
ate, and discuss this assumption later. 

Take a lif) E ~ and a factorization qb. Then the biorthogonal decomposi- 
tion of lif) with respect to this factorization is 

I~Ir) = clfsl[q)l) @ [q/i) -l- c~I1~2> | 1'2> + c3f~'l'p3> | I1~/3) (9) 

Comparison with SCHMIDT yields that the properties jointly possessed by 
the two subsystems (ignoring those with vanishing joint probability) corre- 
spond in the composite Hilbert space 3~ to the projections onto the vectors 

fs'[qoi) | It~i) (10) 

and these projections define a PB subalgebra (in this case a Boolean subalge- 
bra) of the PBA of propositions of ~ .  
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Now consider the 3-dimensional subspace 7~ of Y~ spanned by 

{ fs~lq~l) | I,,>,fs lq 2) | [,a),fs'lq~3) | Id)3)} ( t l )  

In 7s the definite properties defined by the factorization qb in ~ form a 
maximal Boolean subalgebra. We shall reproduce in this subspace the 
Kochen-Specker construction sketched above. 

Take a unitary transformation U: ~ -+ 7{, with U # lye, and extend it 
trivially to a unitary transformation /): ~ ---) 3~, that is, 

~ V f ; '  lip,) | ]*i), i = j 
Ofsltq~i) e l*J> := [fst[Cpi} @ lt~j), i C j (12) 

We now prove the following lemma. 

Lemma 5. Let /) be defined as above. Then ( / i s  not factorizable. 

Proof Assume that 0 is factorizable with respect to q~, that is, assume 
f sUfs  I = U1 | U2. Then for all i # j we have, by (12), 

fsOfs-tlq~i> | ]*j) = Ul[q~i) | U2lqJi) 
= I i) | I%> 

Thus 

UI = 1'~ I, /-]2 = 1 ~  2, /// = 1~, U = Ix  

thus contradicting the assumptions. QED. 

From Lemma 3 it follows that 

:= {fir = T O, f ~ ~} (13) 

is a factorization distinct from qb. Thus, by Theorem 4 and SCHMIDT, we 
obtain that the properties jointly possessed by the systems defined by this 
new factorization correspond to a Boolean subalgebra in ~ that is generated 
by the projections onto the vectors 

f s '  loP,) | l * )  (14) 

(recall we assume all biorthogonal decompositions to be nondegenerate). But 
now, these projections form a maximal Boolean subalgebra in ~ bearing a 
specific relation to the one in (10), defined by the factorization @: 

Lemma 6. Let fs and fs be defined as before. Then 

fs = f s U  
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Proof Define f : = fs O. We show that f = j7 s. We have for all i, j 

and since 0 extends U: ~ ---> ~s the jz'-ll~pi) | IVi ) are linear combinations 
of thefs lJ%)  @ IVi ) alone, and vice versa. This means that 

I * )  -- q / s l l  q:'~) | Iv,;' + I,,o.,) | Iv:,.> + c3/s-'l,f3) | Iv3) 
= | Iv,> + aJ-'l 2> | Iv2) + a f-'lw3) | [,3> 

for some coefficients ~. So, indeed, jZs --)?andj~s = fsO. QED. 

But now we have shown that the definite properties given by ~ are 
generated by the unitary transformation U-1 in g{; from the definite properties 
given by @. And this is what we need to generate a Kochen-Specker contradic- 
tion! In fact, we can now take the finite sequence of rotations constructed 
by Kochen and Specker and obtain a sequence of interpretations of the form 
(2) in the 3-dimensional space ~s each of which corresponds, by the above, 
to definite properties jointly possessed by the subsystems defined by some 
factorization of ~ .  By the Kochen-Specker theorem we know that the PB 
subalgebra generated by these maximal Boolean subalgebras does not admit 
a PB-homomorphism onto {0, 1 }[ 

So we have proved the main theorem of this paper: 

Theorem 7. The union of the maximal Boolean subalgebras defined 
according to (10) by a pure state IV) and by the different factorizations @ 
of a 9-dimensional Hilbert space I~ is not embeddable in a Boolean algebra. 

We still have to discuss the case in which at some stage in our construc- 
tion we encounter degeneracy of the coefficients in some biorthogonal decom- 
position. However, this will be the case only for very special choices of the 
initial factorization @. For each IV) there is an initial factorization @ such 
that the construction can be carried out. In this sense, our assumption about 
nondegeneracy of biorthogonal decompositions does not imply a loss of 
generality. 

6. CONCLUSIONS 

Where do we stand now? The Kochen-Specker result we have derived 
implies there are very deep differences between the two versions of the modal 
interpretation we have considered, Healey's and Dieks'. Indeed, it forces a 
choice between the two versions as between two horns of a dilemma. Healey's 
choice of systems to which he ascribes properties may well allow for a 
common extension to the whole universe, so that Healey can retain a view 
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about how subsystems relate to the whole that is the same as in standard 
quantum mechanics and metaphysically familiar. He has, however, to justify 
the postulate of a preferred (N-, or infinite) factorization of the universe. 

Dieks instead has to introduce a new kind of metaphysics, one in which 
the notion of a quantum mechanical system becomes primary, and one in 
which properties of systems belonging to different factorizations seem not 
to be correlated. Further consequences for Dieks' version of the modal inter- 
pretation are discussed in Bacciagaluppi (1995). 
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